Поляризованные нейтроны - Definition. Was ist Поляризованные нейтроны
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Поляризованные нейтроны - definition

ТЯЖЁЛАЯ ЭЛЕМЕНТАРНАЯ ЧАСТИЦА С НЕЙТРАЛЬНЫМ ЭЛЕКТРИЧЕСКИМ ЗАРЯДОМ
Нейтроны
  • Кварковая структура нейтрона

Поляризованные нейтроны      

совокупность нейтронов, Спины которых имеют преимущественную ориентацию по отношению к какому-либо выделенному направлению в пространстве, обычно направлению магнитного поля. Т. к. Нейтрон обладает спином 1/2, то в магнитном поле Н возможны 2 ориентации его спина: параллельно или антипараллельно Н. Нейтронный пучок поляризован, если он содержит разное количество N нейтронов со спинами, ориентированными вдоль (N+) и против поля (N-). Степень поляризации характеризуют величиной

P = (N+ - N-)/(N+ + N-).

Впервые П. н. были получены при пропускании пучка нейтронов через намагниченную до насыщения железную пластину (метод предложен Ф. Блохом в 1936 и исследован Д. Юзом с сотрудниками в 1947, США). Нейтроны, спины которых параллельны направлению намагниченности ферромагнетика, сильнее рассеиваются и выбывают из пучка. В результате пучок нейтронов, прошедший через пластину, обогащается нейтронами со спинами, антипараллельными намагниченности. Метод требует сильных намагничивающих полей. В полях H Поляризованные нейтроны10000 э наибольшая степень поляризации P = 0,6.

Более эффективен дифракционный метод (разработан К. Шаллом, Е. Воланом и В. Колером, США, 1951), основанный на дифракции нейтронов от определённых плоскостей намагниченных ферромагнитных монокристаллов (см. Дифракция частиц), например сплава Со - Fe. Меняя величину намагниченности и семейства отражающих плоскостей кристалла, можно изменять амплитуду когерентного магнитного рассеяния от 0 до некоторой максимальной величины. Это означает, что для ферромагнитного монокристалла можно подобрать такое брэгговское отражение и величину намагниченности, чтобы ядерная b и магнитная fm амплитуды оказались равными. Тогда для нейтронов со спином, антипараллельным направлению намагниченности, суммарная амплитуда рассеяния равна 0, т. е. под углом Брэгга отразится пучок нейтронов со спинами, параллельными намагниченности. Дифракционный метод позволяет получить монохроматический пучок П. н. тепловых и резонансных энергий (см. Медленные нейтроны) со степенью поляризации до 0,99.

Часто для получения П. н. пользуются методом отражения нейтронов от намагниченных ферромагнитных зеркал (например, из Со). При определённых условиях полное отражение испытывают нейтроны со спинами, параллельными намагниченности ферромагнетика. Метод позволяет получить интенсивные отражённые поляризованные пучки нейтронов. Поляризатором нейтронов может служить также неоднородное магнитное поле. Пучок нейтронов, проходя через такое поле, расщепляется на 2 пучка, т.к. на нейтроны с двумя разными ориентациями спинов действуют противоположно направленные силы (см. Штерна - Герлаха опыт (См. Штерна-Герлаха опыт)).

Одним из методов получения П. н. является рассеяние нейтронов на ориентированных ядрах (См. Ориентированные ядра). Для этого нейтроны пропускают через поляризованную ядерную мишень. Амплитуда ядерного рассеяния зависит от ориентации спина нейтрона относительно спина ядра. Максимальное рассеяние соответствует параллельности спинов нейтрона и ядра, минимальное - их антипараллельности. Особенно эффективна мишень, содержащая ориентированные протоны. Т. к. сечение рассеяния медленных нейтронов на протонах не зависит от их энергии, то удаётся получить П. н. в интервале от 10-2 эв до 104-105 эв. Впервые этот метод был осуществлен Ф. Л. Шапиро с сотрудниками в 1963. П. н. с энергией > 106 эв образуются при рассеянии нейтронов на ядрах за счёт спин-орбитального взаимодействия.

П. н. имеют многочисленные применения в ядерной физике как для исследования фундаментальных свойств взаимодействия нуклонов (несохранение чётности в ядерных силах, временная инвариантность ядерных взаимодействий, динамика (β-распада нейтрона), так и при изучении структуры ядра. В физике твёрдого тела П. н. позволяют исследовать конфигурацию неспаренных электронов в магнетиках (прецизионные измерения распределения неспаренных электронов атомов и ионов в кристаллической решётке привели в ряде случаев к обнаружению отклонений распределения заряда от сферически симметричного), измерить магнитные моменты отдельных компонент в сплавах, величину и знак амплитуд магнитного рассеяния и т.д., исследовать изменения поляризации нейтронов при их рассеянии, а также поворот плоскости поляризации в некоторых кристаллах (что облегчает расшифровку сложных магнитных структур). Неупругое рассеяние П. н. расширяет возможности исследования динамических свойств решётки магнитных кристаллов. П. н. применяются также при изучении фазовых переходов ферромагнетик - парамагнетик и т.д.

Лит.: Власов Н. А., Нейтроны, 2 изд., М., 1971; Гуревич И. И., Тарасов Л. В., физика нейтронов низших энергий, М., 1965; Абов Ю. Г., Гулько А. Д., Крупчицкий П. А., Поляризованные медленные нейтроны, М., 1966; Юз Д., Нейтронная оптика, пер. с англ., М., 1955.

Ю. Г. Абов.

НЕЙТРОН         
(англ. neutron, от лат. neuter - ни тот, ни другой) (n), нейтральная элементарная частица со спином 1/2 и массой, превышающей массу протона на 2,5 электронных масс; относится к барионам. В свободном состоянии нейтрон нестабилен и имеет время жизни ок. 16 мин. Вместе с протонами нейтрон образуют атомные ядра; в ядрах нейтрон стабилен.
нейтрон         
НЕЙТР'ОН, нейтрона, ·муж. (от ·лат. neutrum, ·букв. ни то, ни другое) (физ. неол.). Входящая в ядро атома материальная частица, лишенная электрического заряда, электрически нейтральная.

Wikipedia

Нейтрон

Нейтро́н (от лат. neuter — ни тот, ни другой) — тяжёлая элементарная частица, не имеющая электрического заряда. Нейтрон является фермионом и принадлежит к группе барионов. Нейтроны и протоны являются двумя главными компонентами атомных ядер; общее название для протонов и нейтронов — нуклоны.

Was ist Поляриз<font color="red">о</font>ванные нейтр<font color="red">о</font>ны - Definition